Rust Build
Iteration

Strategies to speed it up

or dynamic hot reloading?

Francois Mockers

= QA Lead @ PayLead
= Maintainer @ Bevy

= Vleue for all your consulting needs on CI, Testing,
Build and Bevy

https://bsky.app/profile/francois.mock.rs

https://bsky.app/profile/francois.mock.rs
https://github.com/mockersf

Disclaimer

= No numbers

= Depends on too many factors specific to your project

= Hardware, development environment, kind of project, shape of dependency tree
= No silver bullet

= If there was one, the rust project would do it

= In fact they did and continue to do so!

= Recommendations of things to look into

= Measure on your use case!

Rust

It’s Slow And It’s OK

The Rust compiler does a lot of things

Step Output Checks
Lexing and . .
. AST Syntax, Macro Expansion, Name Resolution
Parsing
AST Lowering HIR Type Inference, Trait Solving, Type Checking, Desugaring

MIR Lowering MIR Borrow Checker, Optimizations, Monomorphization, Desugaring, Const

Evaluation
Code Generation LLVM-IR Optimizations
Compilation Machine
Code
Linking Executable

https://rustc-dev-guide.rust-lang.org/overview.html

https://rustc-dev-guide.rust-lang.org/overview.html

Some Definitions

Acronym

AST

HIR

THIR

MIR

LLVM-IR

Meaning

Abstract Syntax Tree

High-level Intermediate Representation
Typed High-level Intermediate Representation
Mid-level Intermediate Representation

LLVM Intermediate Representation

Is It Slow?

= How to measure global compilation time?

m hyperfine --prepare 'cargo clean' 'cargo build'

m hyperfine --prepare 'touch src/lib.rs' 'cargo build'

https://github.com/sharkdp/hyperfine

Run the command multiple times with optional setup / warmup, and compare different runs

= How to measure each dependency compilation time?

m cargo build --timings
= https://doc.rust-lang.org/cargo/reference/timings.html

m Reports each crate time, the dependencies and order, and the threads usage
= How to measure each rustc step?

m RUSTFLAGS="-Zself-profile" cargo +nightly build
m https://rustc-dev-guide.rust-lang.org/profiling.html

m Self profiling of the rust compiler

https://github.com/sharkdp/hyperfine
https://doc.rust-lang.org/cargo/reference/timings.html
https://rustc-dev-guide.rust-lang.org/profiling.html

Is It Big?
= There is a relation between binary size and compilation time

= Find out what contributes the most to binary size

» https://github.com/RazrFalcon/cargo-bloat

» https://github.com/AlexEne/twiggy in Wasm

» https://github.com/dtolnay/cargo-llvm-lines

= Strings created at compile time

= https://linux.die.net/man/1/strings

https://github.com/RazrFalcon/cargo-bloat
https://github.com/AlexEne/twiggy
https://github.com/dtolnay/cargo-llvm-lines
https://linux.die.net/man/1/strings

The Easy Answer

= Buy a faster computer

= This is the end of this talk, thank you

Rust Project Goal 1/2

https://rust-lang.github.io/rust-project-goals/2025h2/index.html#flexible-faster-

= Better parallelization

= https://blog.rust-lang.org/2023/11/09/parallel-rustc/

= Front end (down to MIR) parallelization

= Cranelift for development use

= https://cranelift.dev

= Faster compilation for less optimized binaries

https://rust-lang.github.io/rust-project-goals/2025h2/index.html#flexible-faster-compilation
https://rust-lang.github.io/rust-project-goals/2025h2/index.html#flexible-faster-compilation
https://blog.rust-lang.org/2023/11/09/parallel-rustc/
https://cranelift.dev/

Rust Project Goal 2/2

https://rust-lang.github.io/rust-project-goals/2025h2/index.html#flexible-faster-

m Custom std for specific use cases

= With a subset of std

= With different optimization settings

= Avoid rebuilds when only relinking is needed

= If acrate interface doesn’t change, its dependents don’t need to be rebuilt

https://rust-lang.github.io/rust-project-goals/2025h2/index.html#flexible-faster-compilation
https://rust-lang.github.io/rust-project-goals/2025h2/index.html#flexible-faster-compilation

Project Configuration

Cargo Profiles - dev

Cargo profiles control compilation settings
= dev profile

= Fast compilation, slower runtime
= Incremental compilation enabled

= Debug symbols included

= Custom profiles for dev

= Can override optimization level for all dependencies or for specific ones

[profile.dev.package."*"]
opt-level = 3

Cargo Profiles - release

Cargo profiles control compilation settings
= release profile

= Slow compilation, fast runtime

= Full optimizations enabled

= Custom profiles for release

= Can make compilation even slower
= codegen-units : parallel codegen units, the more you use the less knowledge each

has

= 1to :link time optimization, defaultto false

Replace part of the toolchain

= The OS-provided linker is often slow, there are alternatives

= 11d https://lld.llvm.org (Windows, Linux)

= Default on Linuxsince rust 1.90 https://blog.rust-lang.org/2025/09/01/rust-lld-on-
1.90.0-stable/

= mold https://github.com/rui314/mold (Linux)

= wild https://github.com/davidlattimore/wild (Linux)

= Rust compilation is backed by LLVM

= Cranelift can be faster
= Goalis to be usable as a Just-In-Time compiler

= https://cranelift.dev

https://lld.llvm.org/
https://blog.rust-lang.org/2025/09/01/rust-lld-on-1.90.0-stable/
https://blog.rust-lang.org/2025/09/01/rust-lld-on-1.90.0-stable/
https://github.com/rui314/mold
https://github.com/davidlattimore/wild
https://cranelift.dev/

Incremental Compilation

rustc tries to cache things that don’t change between rebuilds

= Enabled by default for the dev profile!
= During compilation:
= Build the HIR
= Query the HIR
= Build of graph of queries and their dependencies
= Cache query results for HIR that didn’t change
= But
= Cachingis hard

» Relies on disk

https://rustc-dev-guide.rust-lang.org/queries/incremental-compilation-in-detail.html

https://rustc-dev-guide.rust-lang.org/queries/incremental-compilation-in-detail.html

Shared Target Folder

= Share a common target folder between projects

= Creating a workspace

= Orusing target-dir
= Avoid recompiling everything if you share dependencies between projects

= But

= Projects can’t be built in parallel
= Dependencies are unified (in a workspace)
= Different features trigger rebuilds (with target-dir)

= Can’t clean an individual project

Shared Compilation Cache

m sccache wraps rustc and caches compilation

Cache can be shared between computers

= Hosted on S3, R2, Redis, ...

Build can be distributed
= But
= Doesn’t work in some cases (build script, crates using the linker), fallbacks to rustc

https://github.com/mozilla/sccache

https://github.com/mozilla/sccache

Why a Rebuild is Happening

CARGO_LOG=cargo:: core::compiler:: fingerprint=info cargo build
Common causes:

= Build scripts
= Different feature sets between builds

= File timestamp issues

= Another build or background process modified or deleted build artifacts

Not possible to debug after the fact why a build happened

https://doc.rust-lang.org/cargo/fag.html#why-is-cargo-rebuilding-my-code

https://doc.rust-lang.org/cargo/faq.html#why-is-cargo-rebuilding-my-code

rust-analyzer

= rust-analyzer shares the target folder with cargo

= Can hold a lock

= Running cargo quickly after a change will waiton rust-analyzer

= Configure different target directories

" rust-analyzer.cargo.targetDir

= But will use more disk space

https://rust-analyzer.github.io/book/fag.html#rust-analyzer-and-cargo-compete-over-the-

https://rust-analyzer.github.io/book/faq.html#rust-analyzer-and-cargo-compete-over-the-build-lock
https://rust-analyzer.github.io/book/faq.html#rust-analyzer-and-cargo-compete-over-the-build-lock

Replace cargo

bazel , buck2, ...

Hermeticity

Reproducibility

Complex setup

Side Note: CI

= Don’t use the same settings

= Disable incremental builds

= Disable debug info
= Why?

= Avoid writing to disk

= Smaller files to cache

Side Note: CI

Use a build cache between runs

Avoid redownloading from crate repository

Avoid rebuilding everything from scratch

Can be CI platform specific (GitHub Actions, GitLab Pipelines, ...)

Can be sccache

Side Note: OS Specific

= macOS

= code signing https://nnethercote.github.io/2025/09/04/faster-rust-builds-on-

= On Apple Silicon, ensure everything is arm

= Windows

= Antivirus checks on the target folder can slow down compilation

https://nnethercote.github.io/2025/09/04/faster-rust-builds-on-mac.html
https://nnethercote.github.io/2025/09/04/faster-rust-builds-on-mac.html

Project Organization

Tests

Unit tests vs integration tests have different compilation impacts

m Unittests (#Hcfg(test)])
= Compiled with the crate
= Quick to rebuild
= Integration tests (tests/ directory)
= Eachfile is a separate crate
= Slower if you have many test files
= Impacts rust-analyzer duration
= Reorganise your integration tests
= Single test crate, with many modules
» https://matklad.github.io/2021/02/27/delete-cargo-integration-tests.html

https://matklad.github.io/2021/02/27/delete-cargo-integration-tests.html
https://nexte.st/

Examples

Examples are compiled as separate binaries

Each example in examples/ is checked during cargo check
= Can significantly increase iteration time with many examples
= Impacts rust-analyzer duration

» Use required-features to gate examples behind features

= Consider using a single multi-example binary with CLI parameters / subcommands

Workspace Setup

Split your project into smaller crates

Allows parallel compilation

Cargo can build independent crates simultaneously

Only rebuild what changed

= Example: separate core, api, cli crates

Be careful not to over-split

= QOverhead per crate

= Complexity

Dependencies as Dynamic Libraries

= Setup your dependencies as dynamic libraries

[lib]
crate-type = ["dylib"]

= Significantly faster linking during iteration
= But

= Miss on some optimizations
= Binaries are not portable

= Can be complex to setup if not already supported by the crate

https://robert.kra.hn/posts/2022-09-09-speeding-up-incremental-rust-compilation-with-

https://robert.kra.hn/posts/2022-09-09-speeding-up-incremental-rust-compilation-with-dylibs/
https://robert.kra.hn/posts/2022-09-09-speeding-up-incremental-rust-compilation-with-dylibs/

Automatic Command Execution

= Iteration loop:

= Change your code
= Wait for rust-analyzer to notreportissues

= Trigger the tests

= Remove the human in the loop, automatically run your tests on any change

= https://dystroy.org/bacon/

" bacon test / bacon nextest

= Can be customized for anything

https://dystroy.org/bacon/

Monitoring Your Dependencies

= Avoid unused dependencies

= https://github.com/est31/cargo-udeps

= https://github.com/bnjbvr/cargo-machete

= Avoid duplicate dependencies

= Cargo will unify dependencies based on SemVer compatibility

» https://github.com/EmbarkStudios/cargo-deny

= Can be a lot of work to update your dependencies’ dependencies

https://github.com/est31/cargo-udeps
https://github.com/bnjbvr/cargo-machete
https://github.com/EmbarkStudios/cargo-deny

Code Organization

Conditional Compilation & Features

Conditional compilation can reduce build scope

Use feature flags to gate expensive code

#Hcfg(feature = "expensive")]
mod expensive;

= Also gate dependencies only used behind gated code

= Only enable features you’re actively working on

= Example: gate database backends, UI frameworks

= Disable default features of your dependencies and only enable what you need
= Keep in mind:

= Features are additive, and must not cause issues when enabled together

= It can explode complexity of tests as it’s a combinatorial issue

Declarative Macros

Macros run at compile time

= macro_rules! :apply atemplate
= Can generate more code

= Recursive declarative macros

macro_rules! smaller_tuples_too {
($m: ident, $ty: ident) = { $m!{$ty} };
($m: ident, $ty: ident, $($tt: ident),*) = {
$m!{$ty, $($tt), =}
smaller_tuples_too!{$m, $($tt),*}
};
}
smaller_tuples_too!(other_macro, F, E, D, C, B, A)

= or worse: https://lukaswirth.dev/tlborm/decl-macros/patterns/tt-muncher.html

= Consider expanding macros

https://lukaswirth.dev/tlborm/decl-macros/patterns/tt-muncher.html

Procedural Macros

Procedural macros can do anything

= Three types
m ${derive(...)] :add code, mostly used to implement a trait
= #{my_own_attribute] :replace code, often wrapping the original code
= custom_macro! :call afunction with side effects at compilation time
= Execute arbitrary Rust code on the TokenStream
= Validate SQL queries against remote database
= Consider:
= Deriving only what you need
= Manual implementations for hot paths
= Avoid calling macros in macros

= Macros with side effects should have an "offline" mode to reduce external calls

Build Scripts

Build scripts and code generation

build.rs runs before compilation
Can generate code, compile C libraries, ... anything

Heavy build scripts slow down every build and are hard to cache
Use change detection to avoid unnecessary reruns

» https://doc.rust-lang.org/cargo/reference/build-scripts.html#change-detection

Consider pre-generating code and checking it in

https://doc.rust-lang.org/cargo/reference/build-scripts.html#change-detection

Static VS Dynamic Dispatch

= Polymorphism
= Functions that accepts any parameter that implements a trait
m Static dispatch (impl Trait , trait bounds, generics)

= Faster runtime: monomorphization

= Slower compilation: code generated for each type
= Dynamic dispatch (dyn Trait)

= Faster compilation: single implementation
= Runtime overhead: use the object vtable

= Dyn Compatibility, Object Safe, Trait Object

Monomorphization

= Generic functions are compiled once per concrete type

= Vec<T> creates separate code for Vec<u8>, Vec<String> , etc.

= Can explode compile times with many type combinations
= Strategies to reduce:

= Use dynamic dispatch for some generic parameters

Share implementations with trait objects

Be mindful of deeply nested generics

Reduce the use of generics in public API

Common Static Dispatch

trait Compute { fn compute(&self) — u32; } fn compute_static_bound<T: Compute>(object: &§T) — u32 {
object.compute()
struct Add { }
a: u32,
b: u32 fn compute_static_impl(object: &impl Compute) — u32 {
} object.compute()
impl Compute for Add { }
fn compute(&self) — u32 { self.a + self.b }
}
struct sub | Dynamic Dispatch
a: u32,
b: u32
! fn compute_dynamic(object: &dyn Compute) — u32 {

impl Compute for Sub { object.compute()

fn compute(&self) — u32 { self.a - self.b } }

Workarounds

Non Rust Files

= Move part of your app to files

= Display: images, styling, ...
= Configuration: json, toml, ron, ...

» Scripts: Lua, Rhai, Python, shaders, ...

= Get the new behavior when rerunning
= Orunload and reload file contents during runtime

= Use file watchers to detect changes (notify crate)

= But no longer checked at compilation

Dynamic hot reloading

Hot reload Rust code as dynamic libraries

Split application into dylib plugins

Reload libraries without restarting the app

Wildly unsafe

Helpers to make it normally unsafe

= libloading https://docs.rs/libloading/latest/libloading/

= hot-lib-reloader https://github.com/rksm/hot-lib-reloader-rs

Requires careful API design at library boundaries

State management across reloads is complex

https://docs.rs/libloading/latest/libloading/
https://github.com/rksm/hot-lib-reloader-rs

Wasm modules

WebAssembly as a safe hot-reload runtime

Compile plugins to Wasm

= WASI preview 2: Component Model

= WASI preview 3: Async Functions

= Wasm Interface Type to share types and functions
Runtime isolation provides safety guarantees

Wasm runtime to execute the module

Slower than native dynamic libraries but safer

Good for user-provided plugins or untrusted code

= QOriterating on your own code

Subsecond

Hot patching for instant iteration

= Hot patch running binaries with code changes
= Extremely fast iteration
= |oad new functions in memory, then update a jumptable
= With limitations
= Only works for code in the binary crate being run

= Can’t change function signature

https://github.com/DioxusLabs/dioxus/tree/main/packages/subsecond

https://github.com/DioxusLabs/dioxus/tree/main/packages/subsecond

Making It Work For You

Conclusion

Trade-offs to consider

= Disk usage vs compilation speed

= Convenience vs performance

= Development experience vs production optimization
= Safety vsiteration speed

= Find the right balance for your project and workflow

Things you should do

Essential actions for faster builds
= Setup your local environment

= Fast toolchain

= Compilation cache

= Organize your code into workspace crates
= Configure dev/release profiles appropriately

= Consider dynamic linking for development

Things you should be aware of

Watch out for compile-time bottlenecks
= Build scripts and procedural macros run at compile time
= Heavy codegen increases build duration

= Understand where time is spent and if you can do something about it

Things you should decide on

Architecture decisions impacting build times
= API surface area: what do you expose?

= Public APIs create more compilation dependencies

= Smaller interfaces mean faster rebuilds

= Feature flags: how customisable is your crate?

= Many features increase complexity

= Optional dependencies add compile-time flexibility

= Balance between ease and compilation speed

Tool Example Outputs

Hyperfine

Benchmark 1: cargo build
Time (mean * 0): 51.604 s + 2.397 s [User: 200.975 s, System: 18.665 s]
Range (min .. max): 49.267 s .. 57.191 s 10 runs

If you want to measure incremental build time instead of clean build, replace cargo
clean by touch src/main.rs oranother of your project rust file

Rust self-profile

+ — + — F — + — + — 4+ — + — + — + — +

+ + + + +
Item | Self time | % of total time | Time | Item count | Incremental result hashing f
+ + + + +
LLVM_module_codegen_emit_obj | 8.55s | 24.648 | 8.55s | 256 | 0.00ns
+ + + + +
LLVM_passes | 5.05s | 14.575 | 5.05s | 1 | 0.00ns
+ + + + +
codegen_module | 4.37s | 12.604 | 5.11s | 256 | 0.00ns
+ + + + +
normalize_canonicalized_projection_ty | 3.18s | 9.167 | 3.21s | 15379 | 4.96ms
+ + + + +
typeck | 2.40s | 6.932 | 2.92s | 6102 | 20.02ms
+ + + + +
codegen_select_candidate | 2.02s | 5.812 | 2.05s | 29315 | 4.22ms
+ + + + +
type_op_prove_predicate | 1.25s | 3.611 | 1.26s | 16565 | 3.45ms
+ + + + +
evaluate_obligation | 803.84ms | 2.319 | 884.90ms | 126613 | 8.97ms
+ + + + +

