
Rust Build

Iteration
Strategies to speed it up

or dynamic hot reloading?

François Mockers

QA Lead @ PayLead

Maintainer @ Bevy

Vleue for all your consulting needs on CI, Testing,

Build and Bevy

https://bsky.app/profile/francois.mock.rs

https://github.com/mockersf

https://bsky.app/profile/francois.mock.rs
https://github.com/mockersf

Disclaimer

No numbers

Depends on too many factors specific to your project

Hardware, development environment, kind of project, shape of dependency tree

No silver bullet

If there was one, the rust project would do it

In fact they did and continue to do so!

Recommendations of things to look into

Measure on your use case!

Rust

It’s Slow And It’s OK
The Rust compiler does a lot of things

Step Output Checks

Lexing and

Parsing
AST Syntax, Macro Expansion, Name Resolution

AST Lowering HIR Type Inference, Trait Solving, Type Checking, Desugaring

MIR Lowering MIR
Borrow Checker, Optimizations, Monomorphization, Desugaring, Const

Evaluation

Code Generation LLVM-IR Optimizations

Compilation
Machine

Code

Linking Executable

https://rustc-dev-guide.rust-lang.org/overview.html

https://rustc-dev-guide.rust-lang.org/overview.html

Some Definitions

Acronym Meaning

AST Abstract Syntax Tree

HIR High-level Intermediate Representation

THIR Typed High-level Intermediate Representation

MIR Mid-level Intermediate Representation

LLVM-IR LLVM Intermediate Representation

Is It Slow?
How to measure global compilation time?

hyperfine --prepare 'cargo clean' 'cargo build'

hyperfine --prepare 'touch src/lib.rs' 'cargo build'

https://github.com/sharkdp/hyperfine

Run the command multiple times with optional setup / warmup, and compare different runs

How to measure each dependency compilation time?

cargo build --timings

https://doc.rust-lang.org/cargo/reference/timings.html

Reports each crate time, the dependencies and order, and the threads usage

How to measure each rustc step?

RUSTFLAGS="-Zself-profile" cargo +nightly build

https://rustc-dev-guide.rust-lang.org/profiling.html

Self profiling of the rust compiler

https://github.com/sharkdp/hyperfine
https://doc.rust-lang.org/cargo/reference/timings.html
https://rustc-dev-guide.rust-lang.org/profiling.html

Is It Big?

There is a relation between binary size and compilation time

Find out what contributes the most to binary size

https://github.com/RazrFalcon/cargo-bloat

https://github.com/AlexEne/twiggy in Wasm

https://github.com/dtolnay/cargo-llvm-lines

Strings created at compile time

https://linux.die.net/man/1/strings

https://github.com/RazrFalcon/cargo-bloat
https://github.com/AlexEne/twiggy
https://github.com/dtolnay/cargo-llvm-lines
https://linux.die.net/man/1/strings

The Easy Answer

Buy a faster computer

This is the end of this talk, thank you

Rust Project Goal 1/2
https://rust-lang.github.io/rust-project-goals/2025h2/index.html#flexible-faster-

compilation

Better parallelization

https://blog.rust-lang.org/2023/11/09/parallel-rustc/

Front end (down to MIR) parallelization

Cranelift for development use

https://cranelift.dev

Faster compilation for less optimized binaries

https://rust-lang.github.io/rust-project-goals/2025h2/index.html#flexible-faster-compilation
https://rust-lang.github.io/rust-project-goals/2025h2/index.html#flexible-faster-compilation
https://blog.rust-lang.org/2023/11/09/parallel-rustc/
https://cranelift.dev/

Rust Project Goal 2/2
https://rust-lang.github.io/rust-project-goals/2025h2/index.html#flexible-faster-

compilation

Custom std for specific use cases

With a subset of std

With different optimization settings

Avoid rebuilds when only relinking is needed

If a crate interface doesn’t change, its dependents don’t need to be rebuilt

https://rust-lang.github.io/rust-project-goals/2025h2/index.html#flexible-faster-compilation
https://rust-lang.github.io/rust-project-goals/2025h2/index.html#flexible-faster-compilation

Project Configuration

Cargo Profiles - dev
Cargo profiles control compilation settings

dev profile

Fast compilation, slower runtime

Incremental compilation enabled

Debug symbols included

Custom profiles for dev

Can override optimization level for all dependencies or for specific ones

[profile.dev.package."*"]

opt-level = 3

Cargo Profiles - release
Cargo profiles control compilation settings

release profile

Slow compilation, fast runtime

Full optimizations enabled

Custom profiles for release

Can make compilation even slower

codegen-units : parallel codegen units, the more you use the less knowledge each

has

lto : link time optimization, default to false

Replace part of the toolchain

The OS-provided linker is often slow, there are alternatives

lld https://lld.llvm.org (Windows, Linux)

Default on Linux since rust 1.90 https://blog.rust-lang.org/2025/09/01/rust-lld-on-

1.90.0-stable/

mold https://github.com/rui314/mold (Linux)

wild https://github.com/davidlattimore/wild (Linux)

Rust compilation is backed by LLVM

Cranelift can be faster

Goal is to be usable as a Just-In-Time compiler

https://cranelift.dev

https://lld.llvm.org/
https://blog.rust-lang.org/2025/09/01/rust-lld-on-1.90.0-stable/
https://blog.rust-lang.org/2025/09/01/rust-lld-on-1.90.0-stable/
https://github.com/rui314/mold
https://github.com/davidlattimore/wild
https://cranelift.dev/

Incremental Compilation
rustc tries to cache things that don’t change between rebuilds

Enabled by default for the dev profile!

During compilation:

Build the HIR

Query the HIR

Build of graph of queries and their dependencies

Cache query results for HIR that didn’t change

But

Caching is hard

Relies on disk

https://rustc-dev-guide.rust-lang.org/queries/incremental-compilation-in-detail.html

https://rustc-dev-guide.rust-lang.org/queries/incremental-compilation-in-detail.html

Shared Target Folder

Share a common target folder between projects

Creating a workspace

Or using target-dir

Avoid recompiling everything if you share dependencies between projects

But

Projects can’t be built in parallel

Dependencies are unified (in a workspace)

Different features trigger rebuilds (with target-dir)

Can’t clean an individual project

Shared Compilation Cache

sccache wraps rustc and caches compilation

Cache can be shared between computers

Hosted on S3, R2, Redis, …

Build can be distributed

But

Doesn’t work in some cases (build script, crates using the linker), fallbacks to rustc

https://github.com/mozilla/sccache

https://github.com/mozilla/sccache

Why a Rebuild is Happening
CARGO_LOG=cargo::core::compiler::fingerprint=info cargo build

Common causes:

Build scripts

Different feature sets between builds

File timestamp issues

Another build or background process modified or deleted build artifacts

Not possible to debug after the fact why a build happened

https://doc.rust-lang.org/cargo/faq.html#why-is-cargo-rebuilding-my-code

https://doc.rust-lang.org/cargo/faq.html#why-is-cargo-rebuilding-my-code

rust-analyzer

rust-analyzer shares the target folder with cargo

Can hold a lock

Running cargo quickly after a change will wait on rust-analyzer

Configure different target directories

rust-analyzer.cargo.targetDir

But will use more disk space

https://rust-analyzer.github.io/book/faq.html#rust-analyzer-and-cargo-compete-over-the-

build-lock

https://rust-analyzer.github.io/book/faq.html#rust-analyzer-and-cargo-compete-over-the-build-lock
https://rust-analyzer.github.io/book/faq.html#rust-analyzer-and-cargo-compete-over-the-build-lock

Replace cargo

bazel , buck2 , …

Hermeticity

Reproducibility

Complex setup

Side Note: CI

Don’t use the same settings

Disable incremental builds

Disable debug info

Why?

Avoid writing to disk

Smaller files to cache

Side Note: CI

Use a build cache between runs

Avoid redownloading from crate repository

Avoid rebuilding everything from scratch

Can be CI platform specific (GitHub Actions, GitLab Pipelines, …)

Can be sccache

Side Note: OS Specific

macOS

code signing https://nnethercote.github.io/2025/09/04/faster-rust-builds-on-

mac.html

On Apple Silicon, ensure everything is arm

Windows

Anti virus checks on the target folder can slow down compilation

https://nnethercote.github.io/2025/09/04/faster-rust-builds-on-mac.html
https://nnethercote.github.io/2025/09/04/faster-rust-builds-on-mac.html

Project Organization

Tests
Unit tests vs integration tests have different compilation impacts

Unit tests (#[cfg(test)])

Compiled with the crate

Quick to rebuild

Integration tests (tests/ directory)

Each file is a separate crate

Slower if you have many test files

Impacts rust-analyzer duration

Reorganise your integration tests

Single test crate, with many modules

https://matklad.github.io/2021/02/27/delete-cargo-integration-tests.html

Consider using cargo nextest for faster test execution https://nexte.st

https://matklad.github.io/2021/02/27/delete-cargo-integration-tests.html
https://nexte.st/

Examples
Examples are compiled as separate binaries

Each example in examples/ is checked during cargo check

Can significantly increase iteration time with many examples

Impacts rust-analyzer duration

Use required-features to gate examples behind features

Consider using a single multi-example binary with CLI parameters / subcommands

Workspace Setup
Split your project into smaller crates

Allows parallel compilation

Cargo can build independent crates simultaneously

Only rebuild what changed

Example: separate core , api , cli crates

Be careful not to over-split

Overhead per crate

Complexity

Dependencies as Dynamic Libraries

Setup your dependencies as dynamic libraries

[lib]

crate-type = ["dylib"]

Significantly faster linking during iteration

But

Miss on some optimizations

Binaries are not portable

Can be complex to setup if not already supported by the crate

https://robert.kra.hn/posts/2022-09-09-speeding-up-incremental-rust-compilation-with-

dylibs/

https://robert.kra.hn/posts/2022-09-09-speeding-up-incremental-rust-compilation-with-dylibs/
https://robert.kra.hn/posts/2022-09-09-speeding-up-incremental-rust-compilation-with-dylibs/

Automatic Command Execution

Iteration loop:

Change your code

Wait for rust-analyzer to not report issues

Trigger the tests

Remove the human in the loop, automatically run your tests on any change

https://dystroy.org/bacon/

bacon test / bacon nextest

Can be customized for anything

https://dystroy.org/bacon/

Monitoring Your Dependencies

Avoid unused dependencies

https://github.com/est31/cargo-udeps

https://github.com/bnjbvr/cargo-machete

Avoid duplicate dependencies

Cargo will unify dependencies based on SemVer compatibility

https://github.com/EmbarkStudios/cargo-deny

Can be a lot of work to update your dependencies’ dependencies

https://github.com/est31/cargo-udeps
https://github.com/bnjbvr/cargo-machete
https://github.com/EmbarkStudios/cargo-deny

Code Organization

Conditional Compilation & Features
Conditional compilation can reduce build scope

Use feature flags to gate expensive code

#[cfg(feature = "expensive")]
mod expensive;

Also gate dependencies only used behind gated code

Only enable features you’re actively working on

Example: gate database backends, UI frameworks

Disable default features of your dependencies and only enable what you need

Keep in mind:

Features are additive, and must not cause issues when enabled together

It can explode complexity of tests as it’s a combinatorial issue

Declarative Macros
Macros run at compile time

macro_rules! : apply a template

Can generate more code

Recursive declarative macros

macro_rules! smaller_tuples_too {
 ($m: ident, $ty: ident) => { $m!{$ty} };
 ($m: ident, $ty: ident, $($tt: ident),*) => {
 $m!{$ty, $($tt),*}
 smaller_tuples_too!{$m, $($tt),*}
 };
}

smaller_tuples_too!(other_macro, F, E, D, C, B, A)

or worse: https://lukaswirth.dev/tlborm/decl-macros/patterns/tt-muncher.html

Consider expanding macros

https://lukaswirth.dev/tlborm/decl-macros/patterns/tt-muncher.html

Procedural Macros
Procedural macros can do anything

Three types

#[derive(...)] : add code, mostly used to implement a trait

#[my_own_attribute] : replace code, often wrapping the original code

custom_macro! : call a function with side effects at compilation time

Execute arbitrary Rust code on the TokenStream

Validate SQL queries against remote database

Consider:

Deriving only what you need

Manual implementations for hot paths

Avoid calling macros in macros

Macros with side effects should have an "offline" mode to reduce external calls

Build Scripts
Build scripts and code generation

build.rs runs before compilation

Can generate code, compile C libraries, … anything

Heavy build scripts slow down every build and are hard to cache

Use change detection to avoid unnecessary reruns

https://doc.rust-lang.org/cargo/reference/build-scripts.html#change-detection

Consider pre-generating code and checking it in

https://doc.rust-lang.org/cargo/reference/build-scripts.html#change-detection

Static VS Dynamic Dispatch

Polymorphism

Functions that accepts any parameter that implements a trait

Static dispatch (impl Trait , trait bounds, generics)

Faster runtime: monomorphization

Slower compilation: code generated for each type

Dynamic dispatch (dyn Trait)

Faster compilation: single implementation

Runtime overhead: use the object vtable

Dyn Compatibility, Object Safe, Trait Object

Monomorphization

Generic functions are compiled once per concrete type

Vec<T> creates separate code for Vec<u8> , Vec<String> , etc.

Can explode compile times with many type combinations

Strategies to reduce:

Use dynamic dispatch for some generic parameters

Share implementations with trait objects

Be mindful of deeply nested generics

Reduce the use of generics in public API

Common Static Dispatch

Dynamic Dispatch

trait Compute { fn compute(&self) -> u32; }

struct Add {
 a: u32,
 b: u32
}

impl Compute for Add {
 fn compute(&self) -> u32 { self.a + self.b }
}

struct Sub {
 a: u32,
 b: u32
}

impl Compute for Sub {
 fn compute(&self) -> u32 { self.a - self.b }
}

fn compute_static_bound<T: Compute>(object: &T) -> u32 {
 object.compute()

}

fn compute_static_impl(object: &impl Compute) -> u32 {
 object.compute()

}

fn compute_dynamic(object: &dyn Compute) -> u32 {
 object.compute()

}

Workarounds

Non Rust Files

Move part of your app to files

Display: images, styling, …

Configuration: json, toml, ron, …

Scripts: Lua, Rhai, Python, shaders, …

Get the new behavior when rerunning

Or unload and reload file contents during runtime

Use file watchers to detect changes (notify crate)

But no longer checked at compilation

Dynamic hot reloading
Hot reload Rust code as dynamic libraries

Split application into dylib plugins

Reload libraries without restarting the app

Wildly unsafe

Helpers to make it normally unsafe

libloading https://docs.rs/libloading/latest/libloading/

hot-lib-reloader https://github.com/rksm/hot-lib-reloader-rs

Requires careful API design at library boundaries

State management across reloads is complex

https://docs.rs/libloading/latest/libloading/
https://github.com/rksm/hot-lib-reloader-rs

Wasm modules
WebAssembly as a safe hot-reload runtime

Compile plugins to Wasm

WASI preview 2: Component Model

WASI preview 3: Async Functions

Wasm Interface Type to share types and functions

Runtime isolation provides safety guarantees

Wasm runtime to execute the module

Slower than native dynamic libraries but safer

Good for user-provided plugins or untrusted code

Or iterating on your own code

Subsecond
Hot patching for instant iteration

Hot patch running binaries with code changes

Extremely fast iteration

Load new functions in memory, then update a jumptable

With limitations

Only works for code in the binary crate being run

Can’t change function signature

https://github.com/DioxusLabs/dioxus/tree/main/packages/subsecond

https://github.com/DioxusLabs/dioxus/tree/main/packages/subsecond

Making It Work For You

Conclusion
Trade-offs to consider

Disk usage vs compilation speed

Convenience vs performance

Development experience vs production optimization

Safety vs iteration speed

Find the right balance for your project and workflow

Things you should do
Essential actions for faster builds

Setup your local environment

Fast toolchain

Compilation cache

Organize your code into workspace crates

Configure dev/release profiles appropriately

Consider dynamic linking for development

Things you should be aware of
Watch out for compile-time bottlenecks

Build scripts and procedural macros run at compile time

Heavy codegen increases build duration

Understand where time is spent and if you can do something about it

Things you should decide on
Architecture decisions impacting build times

API surface area: what do you expose?

Public APIs create more compilation dependencies

Smaller interfaces mean faster rebuilds

Feature flags: how customisable is your crate?

Many features increase complexity

Optional dependencies add compile-time flexibility

Balance between ease and compilation speed

Tool Example Outputs

Hyperfine

If you want to measure incremental build time instead of clean build, replace cargo

clean by touch src/main.rs or another of your project rust file

Benchmark 1: cargo build
 Time (mean ± σ): 51.604 s ± 2.397 s [User: 200.975 s, System: 18.665 s]
 Range (min … max): 49.267 s … 57.191 s 10 runs

Rust self-profile
+--+-----------+-----------------+----------+------------+-----------------------------
| Item | Self time | % of total time | Time | Item count | Incremental result hashing t
+--+-----------+-----------------+----------+------------+-----------------------------
| LLVM_module_codegen_emit_obj | 8.55s | 24.648 | 8.55s | 256 | 0.00ns
+--+-----------+-----------------+----------+------------+-----------------------------
| LLVM_passes | 5.05s | 14.575 | 5.05s | 1 | 0.00ns
+--+-----------+-----------------+----------+------------+-----------------------------
| codegen_module | 4.37s | 12.604 | 5.11s | 256 | 0.00ns
+--+-----------+-----------------+----------+------------+-----------------------------
| normalize_canonicalized_projection_ty | 3.18s | 9.167 | 3.21s | 15379 | 4.96ms
+--+-----------+-----------------+----------+------------+-----------------------------
| typeck | 2.40s | 6.932 | 2.92s | 6102 | 20.02ms
+--+-----------+-----------------+----------+------------+-----------------------------
| codegen_select_candidate | 2.02s | 5.812 | 2.05s | 29315 | 4.22ms
+--+-----------+-----------------+----------+------------+-----------------------------
| type_op_prove_predicate | 1.25s | 3.611 | 1.26s | 16565 | 3.45ms
+--+-----------+-----------------+----------+------------+-----------------------------
| evaluate_obligation | 803.84ms | 2.319 | 884.90ms | 126613 | 8.97ms
+--+-----------+-----------------+----------+------------+-----------------------------
...

